β-Arrestin-biased signaling mediates memory reconsolidation.
نویسندگان
چکیده
A long-standing hypothesis posits that a G protein-coupled signaling pathway mediates β-adrenergic nervous system functions, including learning and memory. Here we report that memory retrieval (reactivation) induces the activation of β1-adrenergic β-arrestin signaling in the brain, which stimulates ERK signaling and protein synthesis, leading to postreactivation memory restabilization. β-Arrestin2-deficient mice exhibit impaired memory reconsolidation in object recognition, Morris water maze, and cocaine-conditioned place preference paradigms. Postreactivation blockade of both brain β-adrenergic Gs protein- and β-arrestin-dependent pathways disrupts memory reconsolidation. Unexpectedly, selective blockade of the Gs/cAMP/PKA signaling but not the β-arrestin/ERK signaling by the biased β-adrenergic ligands does not inhibit reconsolidation. Moreover, the expression of β-arrestin2 in the entorhinal cortex of β-arrestin 2-deficient mice rescues β1-adrenergic ERK signaling and reconsolidation in a G protein pathway-independent manner. We demonstrate that β-arrestin-biased signaling regulates memory reconsolidation and reveal the potential for β-arrestin-biased ligands in the treatment of memory-related disorders.
منابع مشابه
β-arrestin-mediated signaling improves the efficacy of therapeutics.
β-Arrestins (β-arrestin-1 and β-arrestin-2) were first identified as proteins that have the ability to desensitize G protein-coupled receptors (GPCRs). However, it has recently been found that β-arrestins can activate signaling pathways independent of G protein activation. The diversity of these signaling pathways has also been recognized. This leads to an appreciation of β-arrestin-biased agon...
متن کاملβ-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction.
β-adrenergic receptors (βARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent β1AR and Gi-dependent β2AR pathways leads to enhanced cardiomyocyte death, reduced β1AR expression, and decreased inotropic reserve. β-blockers act to block excessive c...
متن کاملMechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor
Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide...
متن کاملβ-Arrestin-biased β-adrenergic signaling promotes extinction learning of cocaine reward memory.
Extinction learning of cocaine-associated contextual cues can help prevent cocaine addicts from relapsing. Pharmacological manipulation of β-adrenergic receptor (β-AR) during extinction learning is being developed as a potential strategy to treat drug addiction. We demonstrated that the extinction learning of cocaine-associated memory was mediated by β-arrestin2-biased but not heterotrimeric gu...
متن کاملDiscovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy.
Elucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D(2) receptor (D(2)R) signaling via β-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 14 شماره
صفحات -
تاریخ انتشار 2015